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Introduction

Newly developed ‘body-in-the-loop’ optimization
algorithms have the potential to dramatically im-
prove the performance of robotic assistive devices,
such as prostheses and exoskeletons. These algo-
rithms minimize a physiological cost function (e.g.,
energy expenditure) over a range of parameter val-
ues (e.g., controller timing) to determine the opti-
mal parameter setting [1]. Successful implementa-
tion of these algorithms depends on the underlying
instantaneous metabolic cost (i.e., how metabolic
expenditure varies as a function of parameter set-
ting). To this end, the relationship between in-
stantaneous energetic cost, x, and experimentally
collected breath measurements, y, can be modeled
as a first-order linear system with a single subject-
specific time constant, 7, according to [1, 3]:
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To implement real-time optimization algorithms,
we are interested in the relationship between be-
tween instantaneous energetic cost, x, and param-
eter, p (i.e., the cost landscape, z(p)). More im-
portantly, we are interested in the minimum of
2(p), which corresponds to the energetically op-
timal parameter value. To obtain an estimate of
z(p), one could simply invert (1) and solve for x
at each parameter value, using experimental mea-
surements of metabolic cost. Another proposed
method expresses z(p) as a polynomial function
[1]. The optimal coefficients of this polynomial
are determined by computing a pseudo-inverse of
a specially-formulated matrix, A, which incorpo-
rates the recursive dynamics from (1) and the
polynomial function, z(p) [1].

Irrespective of the chosen method to estimate z(p),
the identification of the energetically optimal pa-
rameter setting depends explicitly on the time con-
stant, 7, of the subject’s respiratory dynamics.
One common way to identify an individual sub-
ject’s T is to induce an instantaneous step change
in workload (e.g., increase walking speed from 1.0
m/s to 1.5 m/s) and measure the subject’s breath-
by-breath response. It is then possible to fit a first-
order model to the measured data by minimizing

the sum of squared error between the model and
each breath. The 7 of the best-fit model is taken as
the subject’s respiratory dynamic time constant.
There is a significant amount of inter-subject vari-
ability in 7 values; a previous study reported time
constants from 20-60 seconds for able-bodied sub-
jects walking on a treadmill [3].

Any method for estimating the relationship z(p)
requires the collection of experimental breath mea-
surements, y; across a sequence of parameter val-
ues, p;. Therefore, the estimate of z(p) can be
influenced by the sequence of parameters tested.
One method, instantaneous cost mapping (ICM),
measures metabolic expenditure over a continuous
sweep of parameters and estimates z(p) from these
data. Various parameter sweeping sequences (e.g.,
a unidirectional ramp [1] or bidirectional ramp
[2] across parameters) have been explored for use
in ICM algorithms. Gradient descent techniques,
which estimate a local metabolic gradient at an
initial parameter and step iteratively towards an
energetic minimum, have also been explored [1].

As such, the purpose of this study is twofold.
First, we investigate how accurately we are able
to estimate 7, and what factors (e.g., signal noise)
influence our ability to identify 7 on a subject-
specific basis. Second, we investigate how uncer-
tainty in 7 propagates through the system and af-
fects the identification of the subject’s energeti-
cally optimal parameter setting. For the purposes
of this study, we will use the ICM methodology
outlined in [1] to estimate z(p). We hypothesize
that uncertainty in 7 will increase with the amount
of signal noise, but that using a bidirectional ramp
parameter exploration strategy will mitigate the
effect of this uncertainty on idenfitying a minimum
value. The results of this study will inform the re-
finement of current body-in-the-loop optimization
methodologies.

Methods and Results

Uncertainty in Identification of T

We used computer simulation to examine the ef-
fects of three factors on the prediction of 7: noise
in the metabolic measurements, magnitude of the



workload step size, and the actual time constant
(Tact). We created metabolic data by simulat-
ing breath dynamics according to (1), and adding
white Gaussian noise to the signal. We fit a first-
order model to the noisy data to estimate 7 of the
underlying signal (7.s¢), which was constrained be-
tween 5 and 150 seconds. We repeated this simula-
tion 1000 times for each 7,4+ (20-60 sec), metabolic
step size (0.18-0.93 W /kg), and standard deviation
(SD) of noise added to the signal (0.0-0.5 W /kg).
We fit a normal model to the 1000 7.4; values, and
compared the standard deviation of the models
across conditions (Figure 2.1).
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Figure 1: The standard deviation of 7.4 values (z-
axis) increased as signal noise (y-axis) increased
and metabolic step size (x-axis) decreased. Re-
sults are shown for 7,.; = 40 sec.

Propagation of Errors in T

We used computer simulation to investigate how
z(p) is affected by errors in 7. We generated
“clean” (no noise) metabolic data according to (1).
Taet Was 45 seconds for these data, and the under-
lying z..:(p) was a parabola, centered at 0. We
simulated an ICM protocol that ramped for 8 min-
utes as either a unidirectional ramp [1] or a bidi-
rectional ramp [2]. We formulated an A matrix for
the same data, but used 10 different 7., values
from 10-100 seconds. We then used the pseudo-
inverse of the A matrix to generate each s (p),
and compared the results to z..(p) (Figure 2.2).

Discussion

This study presents preliminary investigations into
how uncertainty in estimates of 7 affects our abil-
ity to identify a minimum of z(p) using ICM tech-
niques. As hypothesized, uncertainty in 7 in-
creased as signal noise increased and step size de-
creased (Figure 2.1). In practice, given some mea-
surable signal noise, these data could be used as
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Figure 2: The unidirectional ramp (left) resulted
in minimum locations (x-values) within £10% of
the actual minimum; the corresponding metabolic
cost (y-values) was between 3.5% higher and 14%
lower than the actual minimum. The bidirectional
ramp (right) resulted in minimum locations within
+2.5% of the actual minimum; the corresponding
metabolic cost was between 26% higher and 17%
lower than the actual minimum.

a lookup table to determine how large a step is
necessary to obtain a desired confidence in the
estimate of 7. Future work in this area will fo-
cus on analyzing a variety of statistical distribu-
tions to best represent the uncertainty in 7 esti-
mates. However, as shown in Figure 2.2, the use
of a bidirectional ramp during the ICM protocol
mitigates the effect of uncertainty in 7 on the es-
timate of the minimum, compared to a unidirec-
tional ramp. In an experimental setting, noise lev-
els in the metabolic measurements can far exceed
those tested in this study, which would further in-
crease uncertainty in the subject’s 7 value. There-
fore, the results of this study suggest that due to
the known dynamic delays and noise of respiratory
measurements, the use of a bidirectional ramp pa-
rameter sweep should be considered best practice
for ICM methodology. Future work will focus on
deriving analytical expressions to describe how er-
ror in estimates of 7 propagate through the sys-
tem. It is not yet clear how close our simulations
would match experimental data, so we will also
investigate the effects of 7 uncertainty during hu-
man locomotion with robotic assistive devices.
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