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Introduction
Newly developed ‘body-in-the-loop’ optimization
algorithms have the potential to dramatically im-
prove the performance of robotic assistive devices,
such as prostheses and exoskeletons. These algo-
rithms minimize a physiological cost function (e.g.,
energy expenditure) over a range of parameter val-
ues (e.g., controller timing) to determine the opti-
mal parameter setting [1]. Successful implementa-
tion of these algorithms depends on the underlying
instantaneous metabolic cost (i.e., how metabolic
expenditure varies as a function of parameter set-
ting). To this end, the relationship between in-
stantaneous energetic cost, x, and experimentally
collected breath measurements, y, can be modeled
as a first-order linear system with a single subject-
specific time constant, τ , according to [1, 3]:
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To implement real-time optimization algorithms,
we are interested in the relationship between be-
tween instantaneous energetic cost, x, and param-
eter, p (i.e., the cost landscape, x(p)). More im-
portantly, we are interested in the minimum of
x(p), which corresponds to the energetically op-
timal parameter value. To obtain an estimate of
x(p), one could simply invert (1) and solve for x
at each parameter value, using experimental mea-
surements of metabolic cost. Another proposed
method expresses x(p) as a polynomial function
[1]. The optimal coefficients of this polynomial
are determined by computing a pseudo-inverse of
a specially-formulated matrix, A, which incorpo-
rates the recursive dynamics from (1) and the
polynomial function, x(p) [1].

Irrespective of the chosen method to estimate x(p),
the identification of the energetically optimal pa-
rameter setting depends explicitly on the time con-
stant, τ , of the subject’s respiratory dynamics.
One common way to identify an individual sub-
ject’s τ is to induce an instantaneous step change
in workload (e.g., increase walking speed from 1.0
m/s to 1.5 m/s) and measure the subject’s breath-
by-breath response. It is then possible to fit a first-
order model to the measured data by minimizing

the sum of squared error between the model and
each breath. The τ of the best-fit model is taken as
the subject’s respiratory dynamic time constant.
There is a significant amount of inter-subject vari-
ability in τ values; a previous study reported time
constants from 20-60 seconds for able-bodied sub-
jects walking on a treadmill [3].

Any method for estimating the relationship x(p)
requires the collection of experimental breath mea-
surements, yi across a sequence of parameter val-
ues, pi. Therefore, the estimate of x(p) can be
influenced by the sequence of parameters tested.
One method, instantaneous cost mapping (ICM),
measures metabolic expenditure over a continuous
sweep of parameters and estimates x(p) from these
data. Various parameter sweeping sequences (e.g.,
a unidirectional ramp [1] or bidirectional ramp
[2] across parameters) have been explored for use
in ICM algorithms. Gradient descent techniques,
which estimate a local metabolic gradient at an
initial parameter and step iteratively towards an
energetic minimum, have also been explored [1].

As such, the purpose of this study is twofold.
First, we investigate how accurately we are able
to estimate τ , and what factors (e.g., signal noise)
influence our ability to identify τ on a subject-
specific basis. Second, we investigate how uncer-
tainty in τ propagates through the system and af-
fects the identification of the subject’s energeti-
cally optimal parameter setting. For the purposes
of this study, we will use the ICM methodology
outlined in [1] to estimate x(p). We hypothesize
that uncertainty in τ will increase with the amount
of signal noise, but that using a bidirectional ramp
parameter exploration strategy will mitigate the
effect of this uncertainty on idenfitying a minimum
value. The results of this study will inform the re-
finement of current body-in-the-loop optimization
methodologies.

Methods and Results
Uncertainty in Identification of τ
We used computer simulation to examine the ef-
fects of three factors on the prediction of τ : noise
in the metabolic measurements, magnitude of the



workload step size, and the actual time constant
(τact). We created metabolic data by simulat-
ing breath dynamics according to (1), and adding
white Gaussian noise to the signal. We fit a first-
order model to the noisy data to estimate τ of the
underlying signal (τest), which was constrained be-
tween 5 and 150 seconds. We repeated this simula-
tion 1000 times for each τact (20-60 sec), metabolic
step size (0.18-0.93 W/kg), and standard deviation
(SD) of noise added to the signal (0.0-0.5 W/kg).
We fit a normal model to the 1000 τest values, and
compared the standard deviation of the models
across conditions (Figure 2.1).

Figure 1: The standard deviation of τest values (z-
axis) increased as signal noise (y-axis) increased
and metabolic step size (x-axis) decreased. Re-
sults are shown for τact = 40 sec.

Propagation of Errors in τ
We used computer simulation to investigate how
x(p) is affected by errors in τ . We generated
“clean” (no noise) metabolic data according to (1).
τact was 45 seconds for these data, and the under-
lying xact(p) was a parabola, centered at 0. We
simulated an ICM protocol that ramped for 8 min-
utes as either a unidirectional ramp [1] or a bidi-
rectional ramp [2]. We formulated an A matrix for
the same data, but used 10 different τest values
from 10-100 seconds. We then used the pseudo-
inverse of the A matrix to generate each xest(p),
and compared the results to xact(p) (Figure 2.2).

Discussion
This study presents preliminary investigations into
how uncertainty in estimates of τ affects our abil-
ity to identify a minimum of x(p) using ICM tech-
niques. As hypothesized, uncertainty in τ in-
creased as signal noise increased and step size de-
creased (Figure 2.1). In practice, given some mea-
surable signal noise, these data could be used as

Figure 2: The unidirectional ramp (left) resulted
in minimum locations (x-values) within ±10% of
the actual minimum; the corresponding metabolic
cost (y-values) was between 3.5% higher and 14%
lower than the actual minimum. The bidirectional
ramp (right) resulted in minimum locations within
±2.5% of the actual minimum; the corresponding
metabolic cost was between 26% higher and 17%
lower than the actual minimum.

a lookup table to determine how large a step is
necessary to obtain a desired confidence in the
estimate of τ . Future work in this area will fo-
cus on analyzing a variety of statistical distribu-
tions to best represent the uncertainty in τ esti-
mates. However, as shown in Figure 2.2, the use
of a bidirectional ramp during the ICM protocol
mitigates the effect of uncertainty in τ on the es-
timate of the minimum, compared to a unidirec-
tional ramp. In an experimental setting, noise lev-
els in the metabolic measurements can far exceed
those tested in this study, which would further in-
crease uncertainty in the subject’s τ value. There-
fore, the results of this study suggest that due to
the known dynamic delays and noise of respiratory
measurements, the use of a bidirectional ramp pa-
rameter sweep should be considered best practice
for ICM methodology. Future work will focus on
deriving analytical expressions to describe how er-
ror in estimates of τ propagate through the sys-
tem. It is not yet clear how close our simulations
would match experimental data, so we will also
investigate the effects of τ uncertainty during hu-
man locomotion with robotic assistive devices.
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